Search results for "Composite structures"
showing 10 items of 13 documents
Defining a reduced volume zone for the simulation of burst test on a composite pressure vessels
2018
International audience; A Fibre-Break Model (FBM) developed at Mines ParisTech can predict the burst pressure of high pressure composite vessels. This model uses random values of fibre strength at each Gauss point of the considered vessels meshed with finite element (FE). However, previous studies has determined the optimum FEs to be used on real-scale structures (0.1 mm x 0.1 mm x 8 mm). A simple calculation shows that, on a real-scale pressure vessel, this induces a gigantic number of FEs, hence the extensive computation time. To overcome this problem, the integral range method is proposed to find a reduced volume zone of the vessels, on which an equivalent calculation can be made and giv…
Flexural Test on a Full-Scale 60-kW Wind Turbine-Tower Telescopic Steel Pipe
2019
A full-scale static test to failure was conducted on 6-m (236.22 in.)-long steel pipes constituting a segment of a telescopic wind tower with a 60-kW wind turbine. The diameter of the circular cross section of the steel pipes was 900 mm (35.43 in.), and the nominal thickness was 10 mm (0.39 in.). The steel grade was 355 MPa (51,488 psi). The tests were conducted in a force-controlled mode in a four-point bending test with a shear-to-span ratio of 2.05. The flexural limit states developed in the form of ovalization of the cross section and of local buckling. The buckling occurred in the plastic range because of the diameter-to-thickness ratio of the section. Although local buckling caused sl…
Design and optimization of bonded patch repairs of laminated composite structures
2015
International audience; The present study proposes a method for design optimization of external patched repairs. The tensile behavior of notched specimens with patched repair was studied using finite element analysis and compared with experimental results. It was found that high stress concentrations along the transverse edges of circular patches and/or at the longitudinal edges of the hole leads to early damage initiation in the parent plate. The damage initiation site and its propagation depend on the patch in-plane stiffness. The optimal patch design can be characterized by a strength ratio R*. The overall design of the patch repair can be considered using a dimensionless design paramete…
Computational Study of Failure of Hybrid Steel Trussed Concrete Beams
2017
This study investigates the failure behavior of hybrid steel trussed concrete beams (HSTCBs) under three-point bending through a series of finite-element (FE) simulations. The FE model employs well-established constitutive relations of concrete and steel with a simplified contact condition between the concrete and steel truss. The numerical model is compared with existing experimental data as well as a FE model that uses a more sophisticated concrete-steel interfacial model. The comparison shows that the present model is able to capture various failure mechanisms of the beam and its peak load capacity. The model is applied to investigate the behavior of a set of HSTCBs of different sizes, w…
Structural performances of pultruded GFRP emergency structures – Part 1: Experimental characterization of materials and substructure
2019
Abstract This paper presents an experimental study in the field of structures made of pultruded fiber reinforced polymers (FRP) elements to be used for emergency purposes. A preliminary design of a 3D pultruded glass fiber reinforced polymer structure is presented with the mechanical characterization of the constituting elements. The axial and flexural properties of laminate and I-shaped GRFP profiles are discussed considering the short term creep. In a companion paper, the benefits, the limits and the reliability of the structure analyzed for emergency applications are discussed. In details, the numerical structural analysis of the full-scale 3D model is described followed by the experimen…
A computational aeroelastic framework based on high-order structural models and high-fidelity aerodynamics
2023
A computational framework for high-fidelity static aeroelastic analysis is presented. Aeroelastic analysis traditionally employs a beam stick representation for the structure and potential, inviscid and irrotational flow assumptions for the aerodynamics. The unique contribution of this work is the introduction of a high-order structural formulation coupled with a high-fidelity method for the aerodynamics. In more details, the Carrera Unified Formulation coupled with the Finite Element Method is implemented to model geometrically complex composite, laminated structures as equivalent bi-dimensional plates. The open-source software SU2 is then used for the solution of the aerodynamic fields. T…
Structural Behavior of Telescopic Steel Pipe for a Full-Scale 60 kW Wind Turbine Tower
2020
A simple analytical model, including local effects due to buckling and shear to moment interaction, was developed to pre-dict the load-carrying capacity of CHS tubes under flexure and shear. A finite-element analysis with ABAQUS Code was also conducted for validation of the proposed model. By properly modeling the imperfection effects due to the ovalization of steel tube, a good correlation of the structural response and failure mode was also achieved, and a good correlation with the analytical model was also achieved. Numerical and analytical results were compared with experimental results recently obtained by the author with good agreement. Experimental tests refer to full-scale static te…
Nonlinear free vibrations of composite structures via the X-Ritz method
2020
The analysis of large amplitude vibrations of thin-walled cracked structures build as plate assembly is considered in this study. The problem is addressed via a Ritz approach, called X-Ritz, based on the first order shear deformation theory and von K´arm´an’s geometric nonlinearity assumptions. The trial functions are expressed as series of regular orthogonal polynomial products supplemented with special functions able to represent the crack behaviour; boundary functions are used to guarantee the fulfillment of the kinematic boundary conditions. Results are presented, which illustrate the influence of cracks on the stiffening effect due to large amplitude vibrations.
Experimental Investigation of the Shear Response of Precast Steel-Concrete Trussed Beams
2017
The results of an experimental campaign of three-point bending tests on precast composite beams, named hybrid steel-trussed concrete beams (HSTCBs), are provided. HSTCBs are typically constituted by a precast steel truss embedded in a block of concrete cast in place. Two series of specimens were manufactured, designed such that shear failure would occur, and tested under positive and negative bending moment. The experimental results obtained showed that fragile shear failure occurred in almost all cases, evidencing the crisis of the compressed concrete strut involved in the collapse mechanism. Yielding of the steel members provided ductility to the system, especially in those cases in which…
The Global-Local Approach for Damage Detection in Composite Structures and Rails
2021
Structural components with waveguide geometry can be probed using guided elastic waves. Analytical solutions are prohibitive in complex geometries, especially in presence of structural discontinuities or defects. The Global-Local (GL) approach provides the solution by splitting the waveguide in “local” and “global” regions. The “local” region contains the part of the structure responsible for the complex scattering of an incident wave. What happens in this region cannot be reproduced analytically. The “global” region is regular and sufficiently far from the scatterer, in order to exploit known analytical wave propagation solutions. The proposed GL approach discretizes the local region by re…